# Analog Electronics ENEE236 

## Operational Amplifiers

## Instructor <br> Nasser Ismail

## Operational Amplifiers

- Early Operational Amplifiers were constructed with vacuum tubes and were used in analog computers to perform mathematical operations.
- Even as late as 1965, vacuum tube operational amplifiers were still in use and cost in the range of \$75.
- These days, they are linear Integrated circuits (IC) that use low voltage dc supplies, they are reliable and inexpensive
- The operational amplifier has become so cheap in price (often less than $\$ 1.00$ per unit) and it can be used in so many applications


## Early Vacum Tube Operational Amplifiers



The Philbrick Operational Amplifier (1952)

## Operational Amplifiers

Operational was used as a descriptor early-on because this form of amplifier can perform operations of :

- Adding signals
- Subtracting signals
- Integrating signals, $\int x(t) d t$
- Differentiation of signals,

The applications of operational amplifiers ( shortened to op amp ) have grown beyond those listed above.

## What can you do with Op amps?

- You can make music louder when they are used in stereo equipment.
- You can amplify the heartbeat by using them in medical cardiographs.
- You can use them as comparators in heating systems.
- You can use them for Math operations
- And many other applications in all fields of engineering


## Operational Amplifiers

- In this course we will be concerned with how to use the op amp as a device.
- The internal configuration (design) is beyond the scope of our study and can be covered in an advanced electronics course.
- The complexity is illustrated in the following block diagram and detailed circuit.


## 741 Op-Amp Schematic



## OP-AMP CHARACTERISTICS

1. Very high input impedance (in mega ohms)
2. Very high gain (> 100,000 )
3. Very low output impedance (in ohms)

OP-AMP is a differential, voltage amplifier with high gain.

## Operational Amplifiers

Fortunately, we do not have to assemble a circuit with so many transistors and resistors in order to get and use the op amp The circuit in the previous slide is usually encapsulated into a dual in-line pack (DIP) or any other suitable package type

(a) Op Amp 741

8-pins DIP package

(b) OPA547FKTWT

DIP SMT package
Op Amp packages

## OP-AMP pins identification



b) Notched Package


## Symbol of OP-AMP


(a) Without power connection

(b) With power connection

## Most Op Amps require dual power supply with common ground

Positive Supply + Vcc to pin7 in 741 opamp
Negative Supply -Vcc to pin4 in 741 opamp


Dual Supply Voltages connection

## Some Op Amps work on single supply also (with some restrictions)


(a) Single Positive Voltage


Single Negative Voltage

## Advantage of dual power supply

## Using dual power supply will let the op amp to output true AC voltage.



Op Amp powered from Dual supply


Op Amp powered from Single supply

## What is dual power supply?



## How can you make a dual power supply using two 9V batteries?

What is the voltage between + of first battery and - of second battery?


Dual voltage with two 9 volt batteries

## Operational Amplifiers

The basic op amp with supply voltage included is shown in the diagram below.


In most cases only the two inputs and the output are shown for the op amp.
However, one should keep in mind that supply voltage is required, and a ground.

## Operational Amplifiers Model (Linear Region)

A model of the op amp, with respect to the symbol, is shown below.


Working circuit diagram of op amp


## Voltage Transfer Characteristic

| Linear region of the op amp (amplifier) $\qquad$ | Positive saturation |
| :---: | :---: |
|  | $\begin{gathered} \frac{+V_{\text {sat }}}{\mathrm{A}} \\ \text { slope }=\mathrm{AVd} \end{gathered} \quad \mathrm{Vi}=\mathrm{Vd}$ |
| Negative saturation | In this course we will assume that: <br> +Vsat=+Vcc-2 <br> -Vsat=-Vcc+2 <br> In reality value must be taken from data sheets |

## Output Voltage

- Real Op Amp
Positive Saturation

Negative Saturation
$A V_{d}>+$ Vsat
$v_{0}=+V$ sat $=\sim+V c c-2$

- Vsat $<A V_{d}<+$ Vsat $^{+}$
$v_{0}=A V_{d}$
$A V_{d}<-$ Vsat
$v_{0}=-$ Vsat $=\sim-V c c+2$
- The voltage produced by the dependent voltage source inside the op amp is limited by the voltage applied to the positive and negative rails and $+/$-Vsat level which is approximated by the formulas above
- Also note that opamps are capable of supplying/sourcing limited amount of current (Io(max) ) which can affect its output voltage


## Operational Amplifiers

## Analysis

As an application of the previous model, consider the following configuration.
Find $V_{0}$ as a function of $V_{i n}$ and the resistors $R_{1}$ and $R_{2}$.


Op amp functional circuit.


## Operational Amplifiers

## Exact solution

We can write the following equations for nodes a and $b$.


KCL at A

$$
\begin{equation*}
\frac{V_{i n}+V_{i}}{R_{1}}=\frac{-V_{i}}{R_{i}}-\frac{V_{i}+V_{o}}{R_{2}} \tag{1}
\end{equation*}
$$

$\mathrm{R}_{1}=10 \mathrm{k} \Omega$
$R_{2}=40 \mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{o}}=\mathbf{5 0} \Omega$
$A=100,000 \quad R_{i}=1 \mathrm{meg} \Omega$

KCL at B

$$
\begin{equation*}
\mathrm{V}_{\mathrm{o}}=R_{o}\left[\frac{-\left(V_{i}+V_{o}\right)}{R_{2}}\right]+A V_{i} \tag{2}
\end{equation*}
$$

## Operational Amplifiers

Equation 1 simplifies to;
$R_{1}=10 \mathrm{k} \Omega$
$\mathrm{R}_{2}=40 \mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{o}}=50 \Omega$
$\frac{V_{i n}+V_{i}}{10 k}=\frac{-V_{i}}{1000 k}-\frac{V_{i}+V_{o}}{40 k}$
$-25 \mathrm{~V}_{\mathrm{o}}-126 \mathrm{~V}_{\mathrm{i}}=100 \mathrm{~V}_{\text {in }}$
Equation 2 simplifies to;

$$
\begin{align*}
& \mathrm{V}_{\mathrm{o}}=50\left[\frac{-\left(V_{i}+V_{o}\right)}{40 k}\right]+100,000 V_{i} \\
& \left(4.005 .10^{5}\right) V_{o}-\left(4.10^{9}\right) V_{i}=0 \tag{4}
\end{align*}
$$

## Operational Amplifiers

From Equations (3) and (4) we find;

$$
\begin{equation*}
V_{o}=-3.99 V_{i n} \tag{5}
\end{equation*}
$$

This is an expected answer.
Fortunately, we are not required to do elaborate circuit analysis, as above, to find the relationship between the output and input of an op amp. Simplifying the analysis is our next consideration.

## Operational Amplifiers Models

For most operational amplifiers,
$R_{i}$ is 1 Meg $\Omega$ or larger and
$R_{0}$ is around $50 \Omega$ or less.
The open-loop gain, A , is greater than 100,000 .

## Ideal Op Amp Model:

The following assumptions are made for the ideal op amp.

1. Infinite open-loop gain; $\Rightarrow A \cong \infty$
2. Zero output ohms; $\Rightarrow R_{o}=0$
3. Infinite input ohms; $\Rightarrow R_{i}=\infty$

## Ideal Op Amp Model

Because Ri is equal to $\infty \Omega$, the voltage across $R i$ is $O$.


## Important Note:

## Only Ideal Op Amp Model will be used



The op amp forces the voltage at the inverting input terminal to be equal to the voltage at the noninverting input terminal if there is some component connecting the output terminal to the inverting input terminal.

## OP-AMP CONFIGURATIONS


(a) No Feedback (open loop comparator circuit)

(b) Negative

Feedback

(c) Positive Feedback

- Negative feedback : Feedback to the inverting input (Used in amplifiers)Linear Application
- Positive feedback : Feedback to the non inverting input (Used in oscillators) and Schmitt triggers ( comparators with hysterisis)-non Linear Application
- No feedback : Open loop (used in comparators)- non linear application


## OP-AMPS WITH NEGATIVE FEEDBACK

The two basic amplifier circuits with negative feedback are:

- The non-inverting Amplifier.
- The inverting Amplifier
(Note: Negative feedback is used to limit the gain)

Example \#2: Closed Loop Gain Av (inverting amplifier)



The op amp outputs a voltage Vo such that $\mathrm{V}_{1}=\mathrm{V}_{2}$.
$\mathrm{V}_{2}=\mathrm{Vp}=0 \rightarrow \mathrm{~V}_{1}=\mathrm{Vn}=0$
(virtual ground - potential equal o even though it is not connected really to ground)



## Inverting Amplifier (previous example of slide 30)

Find $V_{0}$ in terms of $V_{i n}$ for the following configuration.


$$
V_{0}=\frac{-R_{2}}{R_{1}} V_{i n}
$$

With $R_{2}=40 \mathrm{k} \Omega$ and $R_{1}=10 \mathrm{k} \Omega$, we have

$$
V_{o}=-4 V_{i n}
$$

Earlier $\qquad$ we got

$$
V_{o}=-3.99 V_{i n}
$$

## Inverting Op Amp:

When $V_{i}=0$ in and we apply the Laplace Transform;

$$
\frac{V_{0}(s)}{V_{i n}(s)}=\frac{-R_{2}}{R_{1}}
$$

In fact, we can replace $R_{2}$ with $Z_{f b}(s)$ and $R_{1}$ with $Z_{1}(\overline{\bar{s}})$ and we have the important expression;

$$
\frac{V_{0}(s)}{V_{i n}(s)}=\frac{-Z_{f b}(s)}{Z_{i n}(s)}
$$

At this point in circuits we are not able to appreciate the use of this equation. We will revisit this at a later point in circuits but for now we point out that judicious selections of $Z_{\mathrm{fb}}(s)$ and $Z_{\mathrm{in}}(s)$ leads to important applications in

- Analog Compensators in Control Systems
- Analog Filters
- Application in Communications
Example
Find the value of Vo and Io and verify if the opamp is in linear
or saturation mode for two values of feedback resistor; assume
Io(max) $=\mathbf{2 0} \mathrm{mA}$ :

1) $\mathrm{R}_{\mathrm{F}}=100 \mathrm{k} \underset{\mathrm{R}_{\mathrm{F}}}{\mathrm{S}} \mathrm{f}_{\mathrm{f}} \mathrm{R}_{\mathrm{F}}=2 \mathrm{M} \Omega$
$V_{p}=V(+)=0 V$
Important
Io(max) is few mA for most
opamps which limits the
values of resistors to be used
to kohm range

## Example

Find the value of Vo and Io and verify if the opamp is in linear or saturation mode for two values of feedback resistor:

1) $\mathrm{R}_{\mathrm{F}}=100 \mathrm{k} \Omega 2$ ) $\mathrm{R}_{\mathrm{F}}=2 \mathrm{M} \Omega$



Saturation mode $\Rightarrow \mathrm{V}_{\mathrm{o}}$ is limited to $-\mathrm{V}_{\text {sat }}$
$\therefore \mathrm{V}_{\mathrm{o}}=-\mathrm{V}_{\mathrm{sat}}=-8 \mathrm{~V}$
$\mathrm{i}_{\mathrm{L}}=\frac{8 \mathrm{~V}}{1 \mathrm{k}}=8 \mathrm{~mA}$
$\mathrm{i}_{\mathrm{o}}=10 \mu \mathrm{~A}+8 \mathrm{~mA}=8.01 \mathrm{~mA}<\operatorname{Io}(\max )$

## Inverting Adder or Summing Amplifier

Summing Amplifier: This is an application of inverting amplifier


$$
\mathrm{V}_{\mathrm{p}}=\mathrm{V}_{(+)}=0 \mathrm{~V}
$$

$$
\mathrm{i}_{1}=\frac{\mathrm{V}_{1}}{\mathrm{R}_{1}} \quad i_{2}=\frac{V_{2}}{R_{2}}
$$

$$
V_{o}=-R_{f} i_{f}
$$

$$
\mathrm{i}_{\mathrm{f}}=\mathrm{i}_{1}+\mathrm{i}_{2}
$$

$$
\mathrm{V}_{0}=-\left[\left(\frac{\mathrm{R}_{\mathrm{fb}}}{\mathrm{R}_{1}}\right) \mathrm{V}_{1}+\left(\frac{\mathrm{R}_{\mathrm{fb}}}{\mathrm{R}_{2}}\right) \mathrm{V}_{2}\right]
$$

$$
\mathrm{V}_{\mathrm{o}}=-\mathrm{R}_{\mathrm{f}}\left[\mathrm{i}_{1}+\mathrm{i}_{2}\right]
$$

If $\mathrm{R}_{1}=\mathrm{R}_{\mathbf{2}}=\mathrm{R}_{\mathrm{fb}}$ then,

$$
V_{0}=-\left[V_{1}+V_{2}\right] \quad \begin{aligned}
& \text { Therefore, we can add signals } \\
& \text { with an op amp }
\end{aligned}
$$

## The non-inverting op amp.

The non-inverting op amp has the input voltage connected to its $(+)$ terminal while no voltage at the negative terminal
$\mathrm{V}_{\mathrm{n}}=\mathrm{V}_{1}=\mathrm{V}_{\mathrm{p}}=\mathrm{V}_{\mathrm{s}}$
$\mathrm{i}_{+}=\mathrm{i}_{-}=0$
$\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{R} 1}+\mathrm{V}_{\mathrm{R} 2}$
$\mathrm{V}_{\mathrm{R} 1}=\mathrm{V}_{1}=\mathrm{i}_{1} \mathrm{R}_{1}$
$\mathrm{V}_{\mathrm{R} 2}=\mathrm{i}_{2} \mathrm{R}_{2}$
but
$\mathrm{i}_{1}=\mathrm{i}_{2}=\frac{\mathrm{V}_{1}}{\mathrm{R}_{1}}$
which gives,

$$
\mathbf{V}_{0}=\left(\mathbf{1}+\frac{\mathbf{R}_{2}}{\mathbf{R}_{1}}\right) \mathbf{V}_{s}
$$

## Example: Non-inverting Amplifiers

Example: Find $V_{0}$ for the following op amp configuration.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{x}}=\frac{6 \mathrm{k}}{6 \mathrm{k}+2 \mathrm{k}} 4 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{x}}=3 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{o}}=\left(1+\frac{\mathrm{R}_{\mathrm{F}}}{\mathrm{R}_{\mathrm{i}}}\right) \mathrm{V}_{\mathrm{x}}
\end{aligned}
$$



$$
\mathrm{V}_{\mathrm{o}}=9 \mathrm{~V}
$$

Make sure that: $-\mathrm{V}_{\text {sat }}<\mathrm{V}_{\mathrm{o}}<+\mathrm{V}_{\text {sat }}$


Non-Inverting Amplifier with unity Gain (Buffer)


$$
\begin{aligned}
& V_{\mathrm{o}}=V(-) \\
& V(-)=V(+)=V \boldsymbol{S} \\
& V_{\mathrm{o}}=V \boldsymbol{S} \\
& \frac{V_{o}}{V \boldsymbol{S}}=1
\end{aligned}
$$

## Buffer or Isolation Amplifier or Voltage <br> Follower

Applications arise in which we wish to connect one circuit to another without the first circuit loading the second.
$>$ This requires that we connect to a "block" that has infinite input impedance and zero output impedance.
An operational amplifier does a good job of approximating this.
Consider the following:


## Buffer or Isolation Amplifier or Voltage Follower



Circuit isolation with an op amp.
It is easy to see that: $V_{0}=V_{\text {in }}$

## Difference Amplifier (Subtractor)

For the following op amp configuration, in order to find Vo we can use Superposition:


1) Short V 2 and find contribution of V 1 to $\mathrm{Vo}==>$ non-inverting amp

$$
V_{o}=V_{o 1}
$$

2) Short V 1 and find contribution of $\mathbf{V} \mathbf{2}$ to $\mathbf{V o}==>$ inverting amp

$$
V_{o}=V_{o 2}
$$

3) The total output is found by summing the two results above

$$
V_{o}=V_{o 1}+V_{o 2}
$$

## Difference Amplifier (Subtractor)



Non-Inverting Amplifier

$$
\begin{aligned}
& V_{o 1}=\left(1+\frac{R_{4}}{R_{3}}\right) V_{+} \\
& V_{o 1}=\left(1+\frac{R_{4}}{R_{3}}\right)\left(\frac{R_{2}}{R_{1}+R_{2}}\right) V_{1}
\end{aligned}
$$



Inverting Amplifier

$$
V_{o 2}=-\frac{R_{4}}{R_{3}} V_{2}
$$

## Difference Amplifier (Subtractor)

$\mathrm{V}_{\mathrm{o}}=\left(1+\frac{\mathrm{R}_{4}}{\mathrm{R}_{3}}\right)\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}\right) \mathrm{V}_{1}-\frac{\mathrm{R}_{4}}{\mathrm{R}_{3}} \mathrm{~V}_{2}$

$\mathrm{V}_{\mathrm{o}}=\mathrm{aV} \mathrm{V}_{1}-\mathrm{bV} \mathrm{V}_{2}$
$\mathrm{a}=\left(1+\frac{\mathrm{R}_{4}}{\mathrm{R}_{3}}\right)\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}\right)$
let $\mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{R}$

$$
\mathrm{R}_{2}=\mathrm{R}_{4}=\mathrm{mR}
$$

$\therefore \mathrm{V}_{\mathrm{o}}=\mathrm{m}\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)$
$\mathrm{b}=\frac{\mathrm{R}_{4}}{\mathrm{R}_{3}}$
under this condition this is a difference amplifier

## Example Consider the op amp configuration below.

Assume $V_{\text {in }}=5 \mathrm{~V}$


$$
\begin{aligned}
& V_{0}=\left(1+\frac{6 k}{1 k}\right)(-3)-\left(\frac{6 k}{1 k}\right)(5) \\
& =-21-30=-51 V
\end{aligned}
$$

Since $V_{0}=-51 \mathrm{~V}$ (op amp will saturate and Vo will be limited to $-\mathrm{V}_{\text {sat }}$ )

## Instrumentation Amplifier

- The previous difference amplifier has low input impedance and it is difficult to vary the gain " $m$ "
- The instrumentation amplifier solves this problem by adding a buffer stage and a difference amplifier stage to solve the disadvantages of difference amplifier



## Example: Instrumentation Amplifier

$$
\begin{aligned}
& V_{x}=\left(1+\frac{2}{a}\right)\left(E_{1}-E_{2}\right) \\
& E_{1}=\frac{R_{1}}{R_{1}+R_{1}} E=\frac{1}{2} E \\
& E_{2}=\frac{R_{x}}{R_{x}+R_{x}+\Delta R_{x}} E \\
& E_{1}-E_{2}=\frac{1}{2} E-\frac{R_{x}}{2 R_{x}+\Delta R_{x}} E \\
& \\
& =\frac{2 R_{x}+\Delta R_{x}}{2\left(2 R_{x}+\Delta R_{x}\right)} E-\frac{2 R_{x}}{2\left(2 R_{x}+\Delta R_{x}\right)} E
\end{aligned}
$$

## Instrumentation Amplifier

assume $\Delta R_{x} \ll R_{x}$

$V_{o}=E 1-E 2=\left(1+\frac{2}{a}\right)\left(E_{1}-E_{2}\right)$

$\mathrm{V}_{\mathrm{o}} \alpha \Delta R_{x}=\left(1+\frac{2}{a}\right) \frac{E}{4 R_{x}}\left(\Delta R_{x}\right)$
let $\mathrm{R}_{1}=10 \mathrm{k} ; \mathrm{E}=10 \mathrm{~V} ; \Delta R_{x}=10 ;$
$\left(1+\frac{2}{a}\right)=400$
$\mathrm{aR}=50.12 \mathrm{ohm}$
(potentiomater is set to 50.12 ohms )

$$
V_{o}=(400)\left(\frac{10}{4}\right) * \frac{10}{10000}=1 \mathrm{~V}
$$

## Voltage to Current converter

$$
i_{i}=i_{L}
$$

$$
\begin{aligned}
& i_{L}=\frac{1 V}{1 k}=+1 m A \\
& \text { let } \mathrm{V}_{\mathrm{i}}=-1 \mathrm{~V} ; \mathrm{Ri}=1 \mathrm{k} \\
& i_{L}=\frac{-1 V}{1 k}=-1 m A
\end{aligned}
$$

$i_{L}=\frac{1 V}{1 k}=+1 m A$
Here we converted $\pm 1 \mathrm{~V}$ to $\pm 1 \mathrm{~mA}$

## Voltage to Current converter

PMMC: Permanent magnet moving coil

$$
\begin{aligned}
& i_{i}=\frac{V_{i}}{R_{i}} \quad \mathrm{Vi}^{\prime} \\
& i_{i}=i_{m} \\
& \text { let } \mathrm{V}_{\mathrm{i}}= \pm 1 \mathrm{~V} ; \mathrm{Ri}=1 \mathrm{k} \\
& i_{m}=\frac{1 V}{1 k}= \pm 1 m A
\end{aligned}
$$



## Current to Voltage converter



$$
\begin{aligned}
& V_{(+)}=I . R \\
& V_{O}=V_{(-)}=V_{(+)}=I . R_{L}
\end{aligned}
$$

Here we converted current I to voltage Vo

Photo-diode
Is a diode which is biased by certain type of light

I - can be any current source, sensor or device with current output

## Non - Linear Applications of opamps


(a) No Feedback (open loop comparator circuit)

(b) Positive Feedback

- No feedback : Open loop (used in comparators)- non linear application
- Positive feedback : Feedback to the non inverting input (Used in oscillators) and Schmitt triggers ( comparators with hysterisis)-non Linear Application


## OP AMP as a Comparator (compares 2 voltages and produces a signal to indicate which is greater)


(a) Comparator Circuit

(b) Comparator Output

Applications of Comparators

- Analog to digital converters (ADC)
- Counters (e.g. count pulses that exceed a certain voltage level).
- Cross Over Detectors


## Example \#1: Voltage Comparator



## Example

- Given how an op amp functions, what do you expect Vo to be if $\mathrm{v} 2=5 \mathrm{~V}$ when:

1. $\mathrm{Vs}=0 \mathrm{~V}$ ?

Answer $\mathrm{Vo}=+\mathrm{V}$ sat
2. $\mathrm{Vs}=5 \mathrm{~V}$ ?

Answer $\mathrm{Vo}=0$ ( practically impossible to have both $\mathrm{V} 1=\mathrm{V} 2$ )
3. $\mathrm{Vs}=6 \mathrm{~V}$ ?

Answer Vo=-Vsat


## a Schmitt trigger is a comparator circuit with hysteresis,

Schmitt trigger devices are typically used in signal
conditioning applications to remove noise from signals used in digital circuits, particularly mechanical switch bounce.
They are also used in closed loop negative feedback configurations to implement relaxation oscillators, used in function generators and switching power supplies.

The output of a Schmitt trigger (B) and a comparator (A), when a noisy signal (U) is applied.
The green dotted lines are the circuit's switching thresholds. The Schmitt trigger tends to remove noise from the signal.


## Schmitt trigger,

This is a comparator circuit and the output is $\quad V_{o}= \pm$ Vsat Analysis: step 1
let $\mathrm{V}_{\mathrm{o}}=+\mathrm{V}$ sat
$\mathrm{V}_{+}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}+\mathrm{V}$ sat $=\mathrm{V}_{\mathrm{UT}}$ - upper threshold voltage
in order for Vo to be + Vsat
$\mathrm{Vd}>0$
$\mathrm{Vd}=\mathrm{V}(+)-\mathrm{V}(-)>0$
$\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}+\mathrm{Vsat}^{2}>\mathrm{V}_{\mathrm{i}}$


R1 is Fed back
from output to (+) input
This is called positive feedback

## Schmitt trigger,

## Analysis: step 2

let $\mathrm{V}_{\mathrm{o}}=-\mathrm{V}$ sat
$\mathrm{V}_{+}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}-\mathrm{Vsat}=\mathrm{V}_{\mathrm{LT}}$ - Lower threshold voltage

in order for Vo to be - Vsat
$\mathrm{Vd}<0$
$\mathrm{Vd}=\mathrm{V}(+)-\mathrm{V}(-)<0$
$\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}-\mathrm{Vsat}<\mathrm{V}_{\mathrm{i}}$
when $\mathrm{V}_{\mathrm{LT}}<\mathrm{V}_{\mathrm{i}} \Rightarrow \mathrm{Vo}=-\mathrm{V}_{\text {sat }}$
But when $\mathrm{V}_{\mathrm{i}}<\mathrm{V}_{\mathrm{LT}} \Rightarrow$ Vo switches to + Vsat


## Schmitt trigger,

Example: Find and sketch $\mathrm{Vo}(\mathrm{t})$ and the plot of $\mathrm{Vo}=\mathrm{f}(\mathrm{Vi})$
Solution: this is a Schmitt trigger and

$$
V o= \pm \text { Vsat }
$$

1) let $V_{o}=+V$ sat
in order for Vo to be + Vsat
$\mathrm{Vd}>0$
$\mathrm{Vd}=\mathrm{V}(+)-\mathrm{V}(-)>0$
$\mathrm{V}(+)>\mathrm{V}(-)$
$\mathrm{V}(-)=4 V$
$V(+)=\frac{100 k}{(2700+100) k}(+V$ sat $)+\frac{2700 k}{(2700+100) k}\left(V_{i}\right)$
$\frac{100 k}{(2700+100) k}(+V s a t)+\frac{2700 k}{(2700+100) k}\left(V_{i}\right)>4 V$
$\frac{100 k}{(2700+100) k}(10 \mathrm{~V})+\frac{2700 k}{(2700+100) k}\left(V_{i}\right)>4 V$
$\left(V_{i}\right)>\left[4 V-\left(\frac{100 k}{(2700+100) k}(10 \mathrm{~V})\right)\right]\left[\frac{(2700+100) k}{2700 k}\right] \Longrightarrow V_{i}>3.777 \mathrm{~V}$
when $\mathrm{V}_{i}>3.777 \Rightarrow \mathrm{Vo}=+$ Vsat $;$ But when $\mathrm{V}_{\mathrm{i}}<3.777 \Rightarrow$ Vo switches to $-V$ sat
2) let $V_{o}=-V$ sat $=(0+2)=2 V$
in order for Vo to be $-\mathrm{Vsat}==>\mathrm{Vd}<0 ; \therefore \mathrm{V}(+)<\mathrm{V}(-)$

$$
\begin{gathered}
V(+)=\frac{100 k}{(2700+100) k}(-V s a t)+\frac{2700 k}{(2700+100) k}\left(V_{i}\right) \\
\frac{100 k}{(2700+100) k}(-V s a t)+\frac{2700 k}{(2700+100) k}\left(V_{i}\right)<4 V \\
\left(V_{i}\right)<\left[4 V-\left(\frac{100 k}{(2700+100) k}(2 V)\right)\right]\left[\frac{(2700+100) k}{2700 k}\right] \Rightarrow V_{i}<4.074 V
\end{gathered}
$$

when $V_{i}<4.074 V \Rightarrow \mathrm{Vo}=-V$ sat $;$ But when $V_{i}>4.074 \Rightarrow$ Vo switches to $+V$ sat

## Conclusion

1) when Vi is decreasing, as long as Vi is $>3.777 \mathrm{~V} \Rightarrow \mathrm{Vo}=+$ Vsat ; but when $\mathrm{V}_{\mathrm{i}}$, becomes $<3.777 \Rightarrow$ Vo switches to $-V$ sat
2) when Vi is increasing, as long as Vi is $<4.074 \mathrm{~V} \Rightarrow \mathrm{Vo}=-$ Vsat ; but when $\mathrm{V}_{\mathrm{i}}$ becomes $>4.074 \Rightarrow$ Vo switches to $+V$ sat



## Integrator

- So far, the input and feedback components have been resistors. If the feedback component used is a capacitor,, the resulting connection is called an integrator.
- Recall that virtual ground means that we can consider the voltage at the junction of $R$ and $X_{c}$ to be ground (since $V_{+}=0 \mathrm{~V}$ ) but that no current goes into ground at that point.

$$
\begin{aligned}
& \mathrm{i}_{\mathrm{i}}=i_{f}=\frac{V_{i}}{R} \\
& V c(t)=\frac{1}{C} \int_{0}^{t} i f_{f}(t) d t \\
& V=-V c(t) \\
& V o=-\frac{1}{C} \int_{0}^{t} \frac{V_{i}(t)}{R_{i}} d t=-\frac{1}{R C} \int_{0}^{t} V_{i}(t) d t
\end{aligned}
$$



## Differentiator

A differentiator, while not as useful as the circuit forms covered above, the differentiator does provide a useful operation, the resulting relation for the circuit being

$$
\begin{aligned}
& \mathrm{i}_{\mathrm{i}}=i_{f}=i_{C}=C \frac{d V_{i}(t)}{d t} \\
& V C(t)=\frac{1}{C} \int_{0}^{t} i_{f}(t) d t \\
& V_{o}=-i f_{f}^{(t) R} \\
& V o=-\left(C \frac{d V_{i}(t)}{d t}\right)(R)=-R C \frac{d V_{i}(t)}{d t}
\end{aligned}
$$



$$
\begin{aligned}
& \text { The Active Low-pass Filter } \\
& \text { The gain analysis of this inverting } \\
& \text { amplifier. Note } \mathrm{s}=\mathrm{j} \omega \text {. } \\
& A_{v}=\frac{\widetilde{v}_{O}(j \omega)}{\widetilde{v}_{S}(j \omega)}=-\frac{Z_{2}(j \omega)}{Z_{1}(j \omega)} \quad Z_{1}(j \omega)=R_{1} \\
& Z_{2}(j \omega)=\frac{R_{2} \frac{1}{j \omega C}}{R_{2}+\frac{1}{j \omega C}}=\frac{R_{2}}{j \omega C R_{2}+1} \\
& A_{v}=-\frac{R_{2}}{R_{1}} \frac{1}{\left(1+j \omega C R_{2}\right)} \\
& =\frac{-K}{\left(1+\frac{j \omega}{\omega_{c}}\right)} \\
& K=\frac{R_{2}}{R_{1}} \\
& \text { \& cut-off frequency: } \\
& \omega_{c}=2 \pi f_{c}=\frac{1}{R_{2} C} \quad \therefore f_{C}=\frac{1}{2 \pi R_{2} C}
\end{aligned}
$$

## Frequency Response (Bode Plot)

Magnitude Plot (Magnitude in
decibels vs log of frequency)
$A_{d B}=20 \log |H(j \omega)|$

$$
\begin{aligned}
|H(j \omega)| & =\left|A_{v}(j \omega)\right| \\
\left|A_{v}(j \omega)\right| & =\frac{K}{\sqrt{1+\left(\frac{\omega}{\omega_{c}}\right)^{2}}}
\end{aligned}
$$

$$
\text { at } \omega=\omega_{\mathrm{c}}
$$

$$
20 \log \frac{1}{\left\lvert\, \sqrt{\sqrt{1+\left(\frac{\omega_{c}}{\omega_{c}}\right)^{2}}}\right.}=20 \log \frac{1}{|\sqrt{1+1}|}
$$

$$
=20 \log |0.707|=-3 d B
$$


$\cong 20 \log 1=0 d B$

is an inverting amplifier with gain set by the ratio of resistors $R_{2}$ and $R_{1}$.

- At frequencies above $\omega_{c}$, the amplifier response "rolls off" at $-20 \mathrm{~dB} /$ decade.
- Notice that cutoff frequency and gain can be independently set.


## Active Low-pass Filter: Example

- Problem: Design an active low-pass filter
- Given Data: $A_{v}=40 \mathrm{~dB}, R_{i n}=5 \mathrm{k} \Omega, f_{c}=2 \mathrm{kHz}$
- Assumptions: Ideal op amp, specified gain represents the desired lowfrequency gain.
- Analysis: $\quad\left|A_{\nu}\right|=10^{40 \mathrm{~dB} / 20 \mathrm{~dB}}=100$

Input resistance is controlled by $R_{1}$ and voltage gain is set by $R_{2} / R_{1}$.
The cutoff frequency is then set by C .

$$
\begin{gathered}
R_{1}=R_{i n}=5 \mathrm{k} \Omega \quad \text { and } \quad\left|A_{v}\right|=\frac{R_{2}}{R_{1}} \Rightarrow R_{2}=100 R_{1}=500 \mathrm{k} \Omega \\
C=\frac{1}{2 \pi f_{c} R_{2}}=\frac{1}{2 \pi(2 \mathrm{kHz})(500 \mathrm{k} \Omega)}=159 \mathrm{pF}
\end{gathered}
$$



## The Active High-pass Filter

The gain analysis of this inverting amplifier.


## Frequency Response (Bode Plot)

Magnitude Plot (Magnitude in decibels vs log of frequency)
$\mathrm{A}_{\mathrm{dB}}=20 \log \mid \mathrm{H}(\mathrm{j} \omega \mid$
$\mid \mathrm{H}\left(\mathrm{j} \omega|=| \mathrm{A}_{\mathrm{V}}(\mathrm{j} \omega \mathrm{j} \mid\right.$
$=\frac{K}{\sqrt{1+\left(\frac{\omega_{\mathrm{c}}}{\omega}\right)^{2}}}$
at $\omega=0.1 \omega_{\text {c }}$
$20 \log \frac{1}{\sqrt{1+\left(\frac{\omega_{c}}{0.1 \omega_{c}}\right)^{2}}}=20 \log \frac{1}{\sqrt{1+100}}$
$\cong 20 \log 0.01=-20 d B$
at $\omega=\omega_{c}$

$=20 \log |0.707|=-3 d B$


at a cutoff frequency of

$$
f_{\mathrm{OH}}=\frac{1}{2 \pi R_{1} C_{1}}
$$

## High-Pass Active Filter



## Cascaded Amplifiers



Three-stage amplifier

- Connecting several amplifiers in cascade (output of one stage connected to the input of the next) can meet design specifications not met by a single amplifier.
- Each amplifer stage is built using an op amp with parameters $A, R_{i d}, R_{o}$, called open loop parameters, that describe the op amp with no external elements.
- $A_{v} R_{i n} R_{\text {out }}$ are closed loop parameters that can be used to describe each closed-loop op amp stage with its feedback network, as well as the overall composite (cascaded) amplifier.
- The gain of each stage can be calculated separately, then the total gain is found by multiplying the resulting gains



## Example PSpice Simulations of Non-inverting Amplifier Circuits

ENEE236
BZU-ECE

## BZU-ECE



Instructor: Nasser Ismail
Fall 2017-2018

ENEE236
BZU-ECE

## BZU-ECE




Instructor: Nasser Ismail
Fall 2017-2018

Low-pass Filter Example PSpice Simulation




## Following Material is for Reference Only

## Applications of Op-Amps

Electrocardiogram (EKG) Amplification •
Need to measure difference in voltage from lead 1 and lead $2 \cdot$ 60 Hz interference from electrical equipment •



## Applications of Op-Amps

Simple EKG circuit • Uses differential amplifier • to cancel common mode signal and amplify differential mode signal

Realistic EKG circuit •
 Uses two non-inverting • amplifiers to first amplify voltage from each lead, followed by differential amplifier
Forms an • "instrumentation amplifier"

Non-inverting Amplifier




|  | Applications of Op-Amps <br> Piezoelectric Transducer• <br> Used to measure force, pressure, acceleration Piezoelectric crystal generates an electric charge in response to deformation <br> Use Charge Amplifier • <br> Just an integrator op-amp circuit • |
| :---: | :---: |

## Applications of Op-Amps

- Example of PI Control: Temperature Control
- Thermal System we wish to automatically control the temperature of:

- Block Diagram of Control System:


